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ABSTRACT 

 This paper explores the development of a compact, edge-

deployable Large Language Model (LLM) for summarizing video 

lecture transcripts. Motivated by the need for efficient learning 

from online video content, we initially pursued a direct fine-

tuning approach using a small LLM (1B-7B parameters). 

However, resource constraints related to maximum token length 

and dataset distribution discrepancies led to suboptimal 

performance. Consequently, we propose a novel segmentation-

based approach, dividing transcripts into smaller, semantically 

related segments using cosine similarity derived from sentence 

embeddings. These segments are then clustered into themes using 

various methods, including timeline-based concatenation, KNN, 

and DBSCAN, before being individually summarized by a 

specialized summarization LLM with 500 million parameters. 

This segmented approach, coupled with the use of a significantly 

smaller, specialized LLM, allows for efficient summarization of 

long video transcripts, addressing the limitations of traditional 

LLMs on resource-constrained devices. Evaluation using ROUGE 

and BERTScore demonstrates the effectiveness of our proposed 

method compared to baseline approaches and highlights the 

potential for efficient video lecture summarization on edge 

devices. Code and results can be found on the project repository 

https://github.com/SKKUWhiteBoard/WhiteBoard_LLM.  

1 Introduction 

 The proliferation of online video lectures presents a valuable 

opportunity for accessible education. However, efficiently 

extracting key information from these often lengthy videos 

remains a challenge. This necessitates the development of 

automated summarization tools that can condense video content 

into concise and informative summaries, facilitating efficient 

learning and review. Our initial approach focused on fine-tuning a 

small Large Language Model (LLM) for this task. This approach, 

motivated by the desire for an edge-deployable solution suitable 

for personal computers and other resource-constrained devices, 

leveraged readily available open-source LLMs (1B-7B 

parameters). 

Our first attempt involved directly fine-tuning the chosen LLM 

using a dataset of YouTube lecture transcripts paired with 

summaries generated by GPT-4o-mini. This approach, while 

conceptually straightforward, encountered significant challenges. 

The average length  of the YouTube transcripts, measured in 

tokens, far exceeded the maximum input length manageable by 

the LLM during fine-tuning, given our available computational 

resources on Kaggle T4 GPUs. This discrepancy between training 

and test data distributions, coupled with the inherent limitations of 

smaller LLMs on long sequences, resulted in suboptimal summary 

quality, including issues such as LLM collapse and inadequate 

semantic preservation. 

 This initial setback prompted a shift in our methodology. We 

pivoted to a segmentation-based approach, hypothesizing that 

breaking down long transcripts into smaller, semantically coherent 

units would mitigate the limitations encountered previously. 

Crucially, this revised approach incorporates a much smaller, 

specialized summarization LLM with 500 million parameters, a 

substantial reduction compared to the billion-parameter models 

used initially. The subsequent sections of this paper detail our 

proposed segmentation method, the various clustering algorithms 

explored for grouping related segments, and the final 

summarization process using this specialized, compact LLM. 

2 Method 

2.1  Segmentation & Embedding 

 First, the task of this part is dividing the whole long text into 

segments. This is controlled by two parameters: "n_word" which 

defines how many words each segment should consist of, and 

"n_overlap" which determines how many words should overlap 

between adjacent segments. Additionally, the "fix_size" parameter 

is used to handle cases where the last segment is shorter than 

expected. 

 The reasons for separating the segments using the number of 

words, not the number of sentences or letters, are as follows. If cut 

based on the number of letters, meaningless tokens could be 

generated depending on the tokenizer characteristics. And, if we 

use the number of sentences, dividing by sentence count could 

lead to significant variability in the length of each segment. 

Therefore, the decision was made to use word count to ensure that 

each segment is of a similar length while preserving the 

contextual meaning that the LLM can process effectively. 

https://github.com/SKKUWhiteBoard/WhiteBoard_LLM
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 Here, each segment is embedded as one vector. This is to 

compute each similarity in the subsequent merging step to bundle 

similar content into the theme buffer. In this project, we use the 

"all-MiniLM-L6-v2" model provided by "sentence-transformer". 

This model has a size of 22.7M and can perform embedding in a 

very short amount of time, which fits well with the objectives of 

the project. However, a user can do the embedding using any 

model freely. 

 

2.2 Merging 

 The process of calculating the similarity between each segment is 

performed using the embedding vector of the segments obtained 

in 2.1. Any method that can calculate the similarity between 

vectors, such as cosine similarity, dot product, and euclidean 

distance, can be used for calculation. Cosine similarity was used 

in this project.  

 Now, based on the calculated similarity, segments with similar 

meanings are regrouped into one theme. There can be many 

methods of this grouping process, but here we will introduce some 

of them we implemented and experimented with. 

 

Timeline-based 

 The concat_timeline_based method groups segments into themes 

by sequentially comparing the similarity between consecutive 

segments. Segment embeddings are generated using the 

encode_segments function. The similarity between the i-th and 

(i+1)-th embeddings is calculated using a similarity metric like 

cosine similarity.  

 If the similarity exceeds a predefined threshold, the segments are 

grouped into the same theme. Otherwise, a new theme group is 

created. The output is a list of groups, each representing a 

thematic cluster of consecutive segments. This method preserves 

the order of segments and ensures thematically similar segments 

are grouped together. 

 

K-NN 

 The concat_knn method uses the k-Nearest Neighbors (k-NN) 

algorithm to cluster embeddings based on pairwise similarity. A 

K-NearestNeighbors model is initialized with k, the number of 

neighbors to consider, and the embeddings are processed to 

identify their nearest neighbors. Neighbors are iteratively 

examined for each embedding, and those within the similarity 

threshold are grouped together. A tracking mechanism ensures 

that embeddings already assigned to a group are not reassigned. 

Groups are formed based on similarity, each groups containing 

indices of closely related embeddings. This method outputs a list 

of groups, where each group represents a cluster of embeddings 

that are highly similar based on the distance threshold. Unlike 

DBSCAN, this approach does not explicitly handle noise and 

assumes all embeddings are part of some group or form 

standalone clusters when no neighbors meet the threshold. 

 

Clustering (DBSCAN) 

 The concat_clustering method utilizes the DBSCAN algorithm to 

group segments based on their embeddings. DBSCAN is a 

density-based clustering approach that identifies clusters as dense 

regions in the embedding space while classifying sparse points as 

noise. DBSCAN is then applied with two primary parameters: eps, 

which defines the maximum distance between two points to be 

considered part of the same cluster, and min_samples, which 

specifies the minimum number of points required to form a dense 

region. Each embedding is assigned a cluster label, with noise 

points labeled as -1. Groups of embeddings are then formed based 

Figure 1: Figure Caption and Image above the caption [In draft mode, Image will not appear on the screen] 
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on their cluster labels, with each cluster corresponding to a list of 

indices. Noise points are collected separately. The output is a list 

of groups, containing the indices of embeddings belonging to the 

same cluster. 

 

Clustering (Hierarchical) 

 The concat hierarchical clustering method uses a hierarchical 

clustering algorithm to group text segments based on their 

embeddings. A linkage matrix is then calculated using a selected 

linkage method (e.g., 'ward') with a distance metric (e.g., 

'euclidean'). Flat clusters are formed by cutting the hierarchical 

tree at a specified distance threshold, dynamically grouping 

embeddings based on their proximity in the embedding space. 

 Unlike methods like KNN, hierarchical clustering does not 

require the number of clusters (k) to be predefined, making it 

suitable for documents with varying thematic structures. Each 

cluster corresponds to a list of indices representing the grouped 

embeddings, and the output is a list of these groups. This 

approach is particularly useful for diverse datasets as it adapts to 

the distribution of the data without the need for a fixed cluster 

count. 

 

Top-down splitting 

 Above merging approaches is the process of grouping starting 

from the smallest segment level. On the other hand, this top-down 

splitting approach works by dividing from the whole text level. 

 First, starting with the entire text, the target text is split into two 

parts, embeddings are generated for these splitted parts, and their 

similarities are compared. If the similarity is smaller than a certain 

threshold, the two split segments are assumed to represent 

different content and are treated as a new target text. The above 

process is repeated until the whole text segments are merged with 

a similarity greater than the threshold or reaches the minimum 

size of segments. 

 

2.3  Summarizing 

 After similar contents are grouped into a theme buffer, each 

group is then summarized using a summarizer sLLM model, and 

these summaries are integrated to create an overall summary of 

the entire text. The summarizer model, like the embedding model, 

can be any model, but for the project's goal of using a light-weight 

small LLM to summarize texts that exceed the context length limit, 

the "bart-large-cnn" model was used. This model has 406M 

parameters and was trained on the CNN DailyMail dataset for 

summarization tasks. 

 Our code is implemented to call the summarizer in a batch 

inference. This allows for the fast generation of an overall 

summary, even when composed of a large number of themes. 

During experiments, it was observed that when the number of 

themes was very large, the inference speed significantly decreased 

due to exceeding hardware resource (VRAM) limits. As a result, 

the batch for all themes was split into mini-batches for inference, 

further confirming the feasibility of usage in a local environment. 

3  Experiments: Metric Introduction 

 In this section, we introduce the evaluation metrics used to assess 

the performance of the proposed summarization approach. These 

metrics are widely used in natural language processing (NLP) 

tasks to quantify the quality of generated summaries by 

comparing them with reference texts. We employ the following 

metrics: 

 

3.1  ROUGE (Recall-Oriented Understudy for Gisting Evaluation) 

 ROUGE is a standard metric for evaluating text summarization 

quality. It measures the overlap between the n-grams of the 

generated summary and the reference summary. The key variants 

used are: 

• ROUGE-1: Measures the overlap of individual words 

(unigrams). 

𝑅𝑂𝑈𝐺𝐸_1 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠

𝑇𝑜𝑡𝑎𝑙 𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑢𝑚𝑚𝑎𝑟𝑦
 

• ROUGE-2: Measures the overlap of bigrams (two 

consecutive words). 

𝑅𝑂𝑈𝐺𝐸_2 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑏𝑖𝑔𝑟𝑎𝑚𝑠

𝑇𝑜𝑡𝑎𝑙 𝑏𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑢𝑚𝑚𝑎𝑟𝑦
 

• ROUGE-L: Uses the Longest Common Subsequence (LCS) 

to capture both order and content overlap. 

𝑅𝑂𝑈𝐺𝐸_𝐿 =
𝐿𝐶𝑆 𝑙𝑒𝑛𝑔𝑡ℎ

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑢𝑚𝑚𝑎𝑟𝑦 𝑙𝑒𝑛𝑔𝑡ℎ
 

These metrics provide a comprehensive evaluation of both content 

coverage (recall) and conciseness (precision). 

 

3.2  BERTScore 

 BERTScore evaluates the semantic similarity between the 

generated and reference summaries by leveraging contextual 

embeddings from a pre-trained BERT model. It calculates the 

cosine similarity between token embeddings, capturing nuanced 

semantic relationships. 

BERTScore =
1

|T|
∑ max

r∈R
cosine_sim(Embedding(t), Embedding(r))

t∈T

 

Where: 

• T represents tokens in the generated summary. 

• R represents tokens in the reference summary. 

Key advantages: 

• Captures semantic meaning beyond surface-level word 

matching. 

• Handles paraphrasing effectively. 
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3.3  Semantic Similarity 

 Semantic similarity evaluates the meaning of the generated 

summary compared to the reference summary. It uses sentence-

level embeddings (e.g., from models like Sentence-BERT or 

Sent2Vec) and computes the cosine similarity between the 

embeddings of the two summaries: 

 

SemanticSimilarity = simcosine(EmbeddingGenerated,EmbeddingReference) 

 

This metric provides a deeper understanding of whether the 

generated summary conveys the same overall meaning as the 

reference, even if the wording or structure differs significantly. 

4  Evaluation Result 

 In this experiment, we aimed to address the challenge of 

segmenting and concatenating meaningful text segments from 

long texts to facilitate processing by small language models 

(sLLM) with limited input length capacity. The datasets used in 

this study include the YouTube dataset, with an average segment 

length of 30k characters, and the Government Report dataset, 

which has an average segment length of 60k characters. For each 

dataset, 100 random samples were selected, and the results (f1-

score) were scaled by a factor of 100 for ease of interpretation. 

 

Dataset 

 The YouTube dataset showed varying performance depending on 

the concatenation method used. Among the methods tested, the 

best results achieved a ROUGE score averaging around 60, 

indicating strong performance in summarizing thematic content. 

Additionally, the BERTScore for this dataset reached up to 75, 

showcasing the ability to capture semantic similarity effectively. 

 

 For the Government Report dataset, which consists of longer and 

more complex text, similar trends were observed. While the 

performance varied across different algorithms, the results were 

consistent in achieving competitive scores. The BERTScore 

reached values around 73, which is notable considering the 

challenges posed by such lengthy texts. 

 

Comparative Analysis 

 When compared to large-scale models like GPT, which typically 

achieve BERTScores in the range of 85 to 95, this approach 

demonstrates that small language models can still achieve 

approximately 70% of the performance. This is significant, 

considering the constraints on computational resources. 

 

Analysis of ROUGE Scores 

 The high ROUGE scores can be attributed to the n-gram-based 

calculation method. During the concatenation process, if the final 

merged themes lead to a higher number of thematic segments, the 

summaries generated may include repetitive information. This 

repetition across different themes contributes to inflated ROUGE 

scores as the metrics favor overlap in content. 

 

 The content in Table 2 presents the ROUGE and BERTScore 

performance based on the number of words (n-word) constituting 

each segment in the timeline-based concatenation method. It is 

observed that smaller values of n-word lead to better performance 

across all evaluation metrics. This trend can be attributed to the 

fact that when the number of words in each segment is reduced, 

Table 1: Evaluation Results  

Dataset Avg. length Concat Method ROUGE(1/2/L) BERTScore 

YouTube 30k 

Timeline-based 62.68/59.21/57.91 75.72 (±3.99) 

knn 9.41/8.80/8.91 65.60 (±8.89) 

Clustering 61.32/57.83/55.61 72.92 (±6.78) 

Gov-report 60k 
Timeline-based 33.85/31.64/30.44 73.31 (±6.76) 

Clustering 75.60/69.71/27.61 72.92 (±6.78) 

 

Table 2: Experiment Results via n-word 

Evaluation Metric 50-word segment 150-word segment 300-word segment 

ROUGE-1 76.057 62.679 29.676 

ROUGE-2 71.239 59.214 27.435 

ROUGE-L 68.698 57.915 27.357 

BERTScore 77.479 73.671 66.859 
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the size of the theme also tends to be smaller, resulting in clearer 

semantic representation. 

 Additionally, experiments were conducted by varying the 

similarity threshold in the timeline-based method. It was observed 

that higher threshold values resulted in better performance across 

all evaluation metrics. This outcome suggests that, during the 

clustering process of segments forming each theme, only those 

with high similarity are grouped together. As a result, both the 

structural score, measured by ROUGE, and the semantic score, 

measured by BERTScore, show improved performance when 

higher similarity thresholds are applied. 

 

 In addition to the results presented in the table, various 

experiments were conducted on different merging methods with 

respect to several parameters like similarity threshold, eps 

(DBSCAN), k (K-NN), etc. 

 

 Clustering (DBSCAN): The variation in scores based on the 

epsilon value in the DBSCAN method showed minimal 

significance. In contrast, experiments conducted with respect to 

the minimum cluster size, min_samples, revealed that smaller 

values resulted in higher performance. This can be interpreted as 

follows: when the number of segments within each theme is 

smaller, it becomes easier to maintain both the structural and 

semantic integrity between the original text and the summary, 

leading to improved results. 

 

 Top-down splitting: Experiments were conducted in the Top-

down splitting method with respect to both similarity threshold 

and n-word. First, in the experiment with varying threshold values, 

a significant performance improvement in both ROUGE and 

BERTScore was observed when the threshold was set above 0.75. 

This can be attributed to the fact that, similar to the timeline-based 

method, segments with similar semantics tend to group together. 

In the experiment with n-word, it was observed that as the value 

of n-word increased, the scores for all metrics slightly decreased. 

This suggests that as the size of the segments grows, it becomes 

more challenging to maintain the structure and semantics of the 

original text in the summary. 

 

 K-NN: Experiments were conducted by varying the value of k in 

the K-NN method. In these experiments, BERTScore showed 

minimal variation with changes in k, while a slight increase in 

ROUGE Score was observed as k decreased. 

 

 

5  Conclusion 

 This paper introduces a novel segmentation-based framework for 

summarizing lengthy video lecture transcripts using a small Large 

Language Model (sLLM) with 500 million parameters. By 

segmenting transcripts into semantically coherent units and 

clustering related segments through methods like timeline-based 

concatenation, KNN, and DBSCAN, the proposed approach 

addresses key challenges such as token length limitations and 

computational constraints. This strategy enables efficient 

summarization on resource-constrained edge devices, achieving 

performance comparable to much larger LLMs like GPT models 

without requiring fine-tuning. 

 The primary contributions of this work are threefold. First, it 

demonstrates an innovative and scalable summarization 

framework that significantly reduces computational requirements 

while maintaining high performance, making it suitable for 

deployment on edge devices. Second, it introduces a flexible 

methodology that allows users to control the granularity of 

summaries by adjusting segmentation and clustering parameters, 

accommodating diverse application needs. Third, it establishes a 

cost-effective and practical solution for real-world use cases, 

including video content summarization, document compression, 

and real-time indexing, paving the way for broader adoption of 

sLLMs in similar tasks. 

 

6  Discussion and Limitations 

 While the approach has some limitations, such as the evaluation 

reliance on metrics like ROUGE and BERTScore, which may not 

fully capture semantic nuances, and the lack of external 

knowledge incorporation due to the smaller model size, these are 

outweighed by the framework’s strengths. Future enhancements, 

such as integrating retrieval-augmented generation (RAG) 

architectures or replacing embedder and summarizer models, 

could address these minor limitations. Overall, this study 

demonstrates that small, specialized LLMs, when paired with 

intelligent pre-processing techniques, can achieve remarkable 

performance, offering a transformative approach to efficient and 

scalable summarization in resource-constrained settings. 
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