

1

Efficient Long Text Summarization Using an sLLM Pipeline

Byeongjin Kang* HoJae Kim* HunTae Kim* Joonyeol Choi* Minsu Kim* Saehun Chun*

Sungkyunkwan University

{qudwlskbj, ghghghost, huntae324, joonyeol99, kms48491000, saehun0519} @ g.skku.edu

ABSTRACT

 This paper explores the development of a compact, edge-

deployable Large Language Model (LLM) for summarizing video

lecture transcripts. Motivated by the need for efficient learning

from online video content, we initially pursued a direct fine-

tuning approach using a small LLM (1B-7B parameters).

However, resource constraints related to maximum token length

and dataset distribution discrepancies led to suboptimal

performance. Consequently, we propose a novel segmentation-

based approach, dividing transcripts into smaller, semantically

related segments using cosine similarity derived from sentence

embeddings. These segments are then clustered into themes using

various methods, including timeline-based concatenation, KNN,

and DBSCAN, before being individually summarized by a

specialized summarization LLM with 500 million parameters.

This segmented approach, coupled with the use of a significantly

smaller, specialized LLM, allows for efficient summarization of

long video transcripts, addressing the limitations of traditional

LLMs on resource-constrained devices. Evaluation using ROUGE

and BERTScore demonstrates the effectiveness of our proposed

method compared to baseline approaches and highlights the

potential for efficient video lecture summarization on edge

devices. Code and results can be found on the project repository

https://github.com/SKKUWhiteBoard/WhiteBoard_LLM.

1 Introduction

 The proliferation of online video lectures presents a valuable

opportunity for accessible education. However, efficiently

extracting key information from these often lengthy videos

remains a challenge. This necessitates the development of

automated summarization tools that can condense video content

into concise and informative summaries, facilitating efficient

learning and review. Our initial approach focused on fine-tuning a

small Large Language Model (LLM) for this task. This approach,

motivated by the desire for an edge-deployable solution suitable

for personal computers and other resource-constrained devices,

leveraged readily available open-source LLMs (1B-7B

parameters).

Our first attempt involved directly fine-tuning the chosen LLM

using a dataset of YouTube lecture transcripts paired with

summaries generated by GPT-4o-mini. This approach, while

conceptually straightforward, encountered significant challenges.

The average length of the YouTube transcripts, measured in

tokens, far exceeded the maximum input length manageable by

the LLM during fine-tuning, given our available computational

resources on Kaggle T4 GPUs. This discrepancy between training

and test data distributions, coupled with the inherent limitations of

smaller LLMs on long sequences, resulted in suboptimal summary

quality, including issues such as LLM collapse and inadequate

semantic preservation.

 This initial setback prompted a shift in our methodology. We

pivoted to a segmentation-based approach, hypothesizing that

breaking down long transcripts into smaller, semantically coherent

units would mitigate the limitations encountered previously.

Crucially, this revised approach incorporates a much smaller,

specialized summarization LLM with 500 million parameters, a

substantial reduction compared to the billion-parameter models

used initially. The subsequent sections of this paper detail our

proposed segmentation method, the various clustering algorithms

explored for grouping related segments, and the final

summarization process using this specialized, compact LLM.

2 Method

2.1 Segmentation & Embedding

 First, the task of this part is dividing the whole long text into

segments. This is controlled by two parameters: "n_word" which

defines how many words each segment should consist of, and

"n_overlap" which determines how many words should overlap

between adjacent segments. Additionally, the "fix_size" parameter

is used to handle cases where the last segment is shorter than

expected.

 The reasons for separating the segments using the number of

words, not the number of sentences or letters, are as follows. If cut

based on the number of letters, meaningless tokens could be

generated depending on the tokenizer characteristics. And, if we

use the number of sentences, dividing by sentence count could

lead to significant variability in the length of each segment.

Therefore, the decision was made to use word count to ensure that

each segment is of a similar length while preserving the

contextual meaning that the LLM can process effectively.

https://github.com/SKKUWhiteBoard/WhiteBoard_LLM

SKKU’19, December, 2024, Korea SKKU Whiteboard

2

 Here, each segment is embedded as one vector. This is to

compute each similarity in the subsequent merging step to bundle

similar content into the theme buffer. In this project, we use the

"all-MiniLM-L6-v2" model provided by "sentence-transformer".

This model has a size of 22.7M and can perform embedding in a

very short amount of time, which fits well with the objectives of

the project. However, a user can do the embedding using any

model freely.

2.2 Merging

 The process of calculating the similarity between each segment is

performed using the embedding vector of the segments obtained

in 2.1. Any method that can calculate the similarity between

vectors, such as cosine similarity, dot product, and euclidean

distance, can be used for calculation. Cosine similarity was used

in this project.

 Now, based on the calculated similarity, segments with similar

meanings are regrouped into one theme. There can be many

methods of this grouping process, but here we will introduce some

of them we implemented and experimented with.

Timeline-based

 The concat_timeline_based method groups segments into themes

by sequentially comparing the similarity between consecutive

segments. Segment embeddings are generated using the

encode_segments function. The similarity between the i-th and

(i+1)-th embeddings is calculated using a similarity metric like

cosine similarity.

 If the similarity exceeds a predefined threshold, the segments are

grouped into the same theme. Otherwise, a new theme group is

created. The output is a list of groups, each representing a

thematic cluster of consecutive segments. This method preserves

the order of segments and ensures thematically similar segments

are grouped together.

K-NN

 The concat_knn method uses the k-Nearest Neighbors (k-NN)

algorithm to cluster embeddings based on pairwise similarity. A

K-NearestNeighbors model is initialized with k, the number of

neighbors to consider, and the embeddings are processed to

identify their nearest neighbors. Neighbors are iteratively

examined for each embedding, and those within the similarity

threshold are grouped together. A tracking mechanism ensures

that embeddings already assigned to a group are not reassigned.

Groups are formed based on similarity, each groups containing

indices of closely related embeddings. This method outputs a list

of groups, where each group represents a cluster of embeddings

that are highly similar based on the distance threshold. Unlike

DBSCAN, this approach does not explicitly handle noise and

assumes all embeddings are part of some group or form

standalone clusters when no neighbors meet the threshold.

Clustering (DBSCAN)

 The concat_clustering method utilizes the DBSCAN algorithm to

group segments based on their embeddings. DBSCAN is a

density-based clustering approach that identifies clusters as dense

regions in the embedding space while classifying sparse points as

noise. DBSCAN is then applied with two primary parameters: eps,

which defines the maximum distance between two points to be

considered part of the same cluster, and min_samples, which

specifies the minimum number of points required to form a dense

region. Each embedding is assigned a cluster label, with noise

points labeled as -1. Groups of embeddings are then formed based

Figure 1: Figure Caption and Image above the caption [In draft mode, Image will not appear on the screen]

Efficient Long Text Summarization Using an sLLM Pipeline SKKU’19, December, 2024, Korea

3

on their cluster labels, with each cluster corresponding to a list of

indices. Noise points are collected separately. The output is a list

of groups, containing the indices of embeddings belonging to the

same cluster.

Clustering (Hierarchical)

 The concat hierarchical clustering method uses a hierarchical

clustering algorithm to group text segments based on their

embeddings. A linkage matrix is then calculated using a selected

linkage method (e.g., 'ward') with a distance metric (e.g.,

'euclidean'). Flat clusters are formed by cutting the hierarchical

tree at a specified distance threshold, dynamically grouping

embeddings based on their proximity in the embedding space.

 Unlike methods like KNN, hierarchical clustering does not

require the number of clusters (k) to be predefined, making it

suitable for documents with varying thematic structures. Each

cluster corresponds to a list of indices representing the grouped

embeddings, and the output is a list of these groups. This

approach is particularly useful for diverse datasets as it adapts to

the distribution of the data without the need for a fixed cluster

count.

Top-down splitting

 Above merging approaches is the process of grouping starting

from the smallest segment level. On the other hand, this top-down

splitting approach works by dividing from the whole text level.

 First, starting with the entire text, the target text is split into two

parts, embeddings are generated for these splitted parts, and their

similarities are compared. If the similarity is smaller than a certain

threshold, the two split segments are assumed to represent

different content and are treated as a new target text. The above

process is repeated until the whole text segments are merged with

a similarity greater than the threshold or reaches the minimum

size of segments.

2.3 Summarizing

 After similar contents are grouped into a theme buffer, each

group is then summarized using a summarizer sLLM model, and

these summaries are integrated to create an overall summary of

the entire text. The summarizer model, like the embedding model,

can be any model, but for the project's goal of using a light-weight

small LLM to summarize texts that exceed the context length limit,

the "bart-large-cnn" model was used. This model has 406M

parameters and was trained on the CNN DailyMail dataset for

summarization tasks.

 Our code is implemented to call the summarizer in a batch

inference. This allows for the fast generation of an overall

summary, even when composed of a large number of themes.

During experiments, it was observed that when the number of

themes was very large, the inference speed significantly decreased

due to exceeding hardware resource (VRAM) limits. As a result,

the batch for all themes was split into mini-batches for inference,

further confirming the feasibility of usage in a local environment.

3 Experiments: Metric Introduction

 In this section, we introduce the evaluation metrics used to assess

the performance of the proposed summarization approach. These

metrics are widely used in natural language processing (NLP)

tasks to quantify the quality of generated summaries by

comparing them with reference texts. We employ the following

metrics:

3.1 ROUGE (Recall-Oriented Understudy for Gisting Evaluation)

 ROUGE is a standard metric for evaluating text summarization

quality. It measures the overlap between the n-grams of the

generated summary and the reference summary. The key variants

used are:

• ROUGE-1: Measures the overlap of individual words

(unigrams).

𝑅𝑂𝑈𝐺𝐸_1 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠

𝑇𝑜𝑡𝑎𝑙 𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑢𝑚𝑚𝑎𝑟𝑦

• ROUGE-2: Measures the overlap of bigrams (two

consecutive words).

𝑅𝑂𝑈𝐺𝐸_2 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑏𝑖𝑔𝑟𝑎𝑚𝑠

𝑇𝑜𝑡𝑎𝑙 𝑏𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑢𝑚𝑚𝑎𝑟𝑦

• ROUGE-L: Uses the Longest Common Subsequence (LCS)

to capture both order and content overlap.

𝑅𝑂𝑈𝐺𝐸_𝐿 =
𝐿𝐶𝑆 𝑙𝑒𝑛𝑔𝑡ℎ

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑢𝑚𝑚𝑎𝑟𝑦 𝑙𝑒𝑛𝑔𝑡ℎ

These metrics provide a comprehensive evaluation of both content

coverage (recall) and conciseness (precision).

3.2 BERTScore

 BERTScore evaluates the semantic similarity between the

generated and reference summaries by leveraging contextual

embeddings from a pre-trained BERT model. It calculates the

cosine similarity between token embeddings, capturing nuanced

semantic relationships.

BERTScore =
1

|T|
∑ max

r∈R
cosine_sim(Embedding(t), Embedding(r))

t∈T

Where:

• T represents tokens in the generated summary.

• R represents tokens in the reference summary.

Key advantages:

• Captures semantic meaning beyond surface-level word

matching.

• Handles paraphrasing effectively.

SKKU’19, December, 2024, Korea SKKU Whiteboard

4

3.3 Semantic Similarity

 Semantic similarity evaluates the meaning of the generated

summary compared to the reference summary. It uses sentence-

level embeddings (e.g., from models like Sentence-BERT or

Sent2Vec) and computes the cosine similarity between the

embeddings of the two summaries:

SemanticSimilarity = simcosine(EmbeddingGenerated,EmbeddingReference)

This metric provides a deeper understanding of whether the

generated summary conveys the same overall meaning as the

reference, even if the wording or structure differs significantly.

4 Evaluation Result

 In this experiment, we aimed to address the challenge of

segmenting and concatenating meaningful text segments from

long texts to facilitate processing by small language models

(sLLM) with limited input length capacity. The datasets used in

this study include the YouTube dataset, with an average segment

length of 30k characters, and the Government Report dataset,

which has an average segment length of 60k characters. For each

dataset, 100 random samples were selected, and the results (f1-

score) were scaled by a factor of 100 for ease of interpretation.

Dataset

 The YouTube dataset showed varying performance depending on

the concatenation method used. Among the methods tested, the

best results achieved a ROUGE score averaging around 60,

indicating strong performance in summarizing thematic content.

Additionally, the BERTScore for this dataset reached up to 75,

showcasing the ability to capture semantic similarity effectively.

 For the Government Report dataset, which consists of longer and

more complex text, similar trends were observed. While the

performance varied across different algorithms, the results were

consistent in achieving competitive scores. The BERTScore

reached values around 73, which is notable considering the

challenges posed by such lengthy texts.

Comparative Analysis

 When compared to large-scale models like GPT, which typically

achieve BERTScores in the range of 85 to 95, this approach

demonstrates that small language models can still achieve

approximately 70% of the performance. This is significant,

considering the constraints on computational resources.

Analysis of ROUGE Scores

 The high ROUGE scores can be attributed to the n-gram-based

calculation method. During the concatenation process, if the final

merged themes lead to a higher number of thematic segments, the

summaries generated may include repetitive information. This

repetition across different themes contributes to inflated ROUGE

scores as the metrics favor overlap in content.

 The content in Table 2 presents the ROUGE and BERTScore

performance based on the number of words (n-word) constituting

each segment in the timeline-based concatenation method. It is

observed that smaller values of n-word lead to better performance

across all evaluation metrics. This trend can be attributed to the

fact that when the number of words in each segment is reduced,

Table 1: Evaluation Results

Dataset Avg. length Concat Method ROUGE(1/2/L) BERTScore

YouTube 30k

Timeline-based 62.68/59.21/57.91 75.72 (±3.99)

knn 9.41/8.80/8.91 65.60 (±8.89)

Clustering 61.32/57.83/55.61 72.92 (±6.78)

Gov-report 60k
Timeline-based 33.85/31.64/30.44 73.31 (±6.76)

Clustering 75.60/69.71/27.61 72.92 (±6.78)

Table 2: Experiment Results via n-word

Evaluation Metric 50-word segment 150-word segment 300-word segment

ROUGE-1 76.057 62.679 29.676

ROUGE-2 71.239 59.214 27.435

ROUGE-L 68.698 57.915 27.357

BERTScore 77.479 73.671 66.859

Efficient Long Text Summarization Using an sLLM Pipeline SKKU’19, December, 2024, Korea

5

the size of the theme also tends to be smaller, resulting in clearer

semantic representation.

 Additionally, experiments were conducted by varying the

similarity threshold in the timeline-based method. It was observed

that higher threshold values resulted in better performance across

all evaluation metrics. This outcome suggests that, during the

clustering process of segments forming each theme, only those

with high similarity are grouped together. As a result, both the

structural score, measured by ROUGE, and the semantic score,

measured by BERTScore, show improved performance when

higher similarity thresholds are applied.

 In addition to the results presented in the table, various

experiments were conducted on different merging methods with

respect to several parameters like similarity threshold, eps

(DBSCAN), k (K-NN), etc.

 Clustering (DBSCAN): The variation in scores based on the

epsilon value in the DBSCAN method showed minimal

significance. In contrast, experiments conducted with respect to

the minimum cluster size, min_samples, revealed that smaller

values resulted in higher performance. This can be interpreted as

follows: when the number of segments within each theme is

smaller, it becomes easier to maintain both the structural and

semantic integrity between the original text and the summary,

leading to improved results.

 Top-down splitting: Experiments were conducted in the Top-

down splitting method with respect to both similarity threshold

and n-word. First, in the experiment with varying threshold values,

a significant performance improvement in both ROUGE and

BERTScore was observed when the threshold was set above 0.75.

This can be attributed to the fact that, similar to the timeline-based

method, segments with similar semantics tend to group together.

In the experiment with n-word, it was observed that as the value

of n-word increased, the scores for all metrics slightly decreased.

This suggests that as the size of the segments grows, it becomes

more challenging to maintain the structure and semantics of the

original text in the summary.

 K-NN: Experiments were conducted by varying the value of k in

the K-NN method. In these experiments, BERTScore showed

minimal variation with changes in k, while a slight increase in

ROUGE Score was observed as k decreased.

5 Conclusion

 This paper introduces a novel segmentation-based framework for

summarizing lengthy video lecture transcripts using a small Large

Language Model (sLLM) with 500 million parameters. By

segmenting transcripts into semantically coherent units and

clustering related segments through methods like timeline-based

concatenation, KNN, and DBSCAN, the proposed approach

addresses key challenges such as token length limitations and

computational constraints. This strategy enables efficient

summarization on resource-constrained edge devices, achieving

performance comparable to much larger LLMs like GPT models

without requiring fine-tuning.

 The primary contributions of this work are threefold. First, it

demonstrates an innovative and scalable summarization

framework that significantly reduces computational requirements

while maintaining high performance, making it suitable for

deployment on edge devices. Second, it introduces a flexible

methodology that allows users to control the granularity of

summaries by adjusting segmentation and clustering parameters,

accommodating diverse application needs. Third, it establishes a

cost-effective and practical solution for real-world use cases,

including video content summarization, document compression,

and real-time indexing, paving the way for broader adoption of

sLLMs in similar tasks.

6 Discussion and Limitations

 While the approach has some limitations, such as the evaluation

reliance on metrics like ROUGE and BERTScore, which may not

fully capture semantic nuances, and the lack of external

knowledge incorporation due to the smaller model size, these are

outweighed by the framework’s strengths. Future enhancements,

such as integrating retrieval-augmented generation (RAG)

architectures or replacing embedder and summarizer models,

could address these minor limitations. Overall, this study

demonstrates that small, specialized LLMs, when paired with

intelligent pre-processing techniques, can achieve remarkable

performance, offering a transformative approach to efficient and

scalable summarization in resource-constrained settings.

REFERENCES
[1] Huang, L., Cao, S., Parulian, N., Ji, H., & Wang, L. (2021). Efficient attentions

for long document summarization. arXiv preprint arXiv:2104.02112.

[2] Cao, S., & Wang, L. (2022). HIBRIDS: Attention with hierarchical biases for

structure-aware long document summarization. arXiv preprint

arXiv:2203.10741.

[3] Lin, C. Y. (2004, July). Rouge: A package for automatic evaluation of

summaries. In Text summarization branches out (pp. 74-81).

[4] Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., & Artzi, Y. (2019).

Bertscore: Evaluating text generation with bert. arXiv preprint

arXiv:1904.09675.

